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A BST RA CT  

The interpretation of science data is critically dependent on the underlying quality of the data.  However, 
the volume of Earth Science remote sensing data has grown so large that it is becoming increasingly difficult 
to assess the quality of all of the data.  The problem is compounded by the evolution of and need for 
increasingly automated knowledge extraction:  in near-real-time applications there may be simply no time to 
incorporate a human sanity check on the results.  However, the same automated data understanding 
techniques that are contributing to the problem may help to solve it.  We propose the incorporation of 
machine learning techniques to assess quality in future intelligent archives.  Both supervised and unsupervised 
classifications are viable techniques.  Supervised classifiers may be either direct, using a training set of known 
quality signatures, or indirect, in which geophysical classifications are used either to distinguish outliers more 
readily, or to simplify the search for temporal or spatial anomalies that indicate a quality problem.  We explore 
in some detail the characteristics of a variety of specific machine learning methods relative to the 
requirements of automated data quality assessment.   

We also present a notional architecture of an autonomous quality assessor within an intelligent archive.  
The architecture includes components to support the machine learning techniques.  These include a data 
characterizer to prepare the data for the machine learning algorithm and a reference subsetter to extract and 
store reference data sets.  The critical issue of distinguishing novel features from quality problems is 
addressed by a Corroborator component, which seeks corroborating data from other sources when such an 
ambiguity is identified.  However, in order to realize such an architecture, more research and development is 
needed in the application of machine learning techniques to detecting quality problems in data. 



 

 
3

CONT ENT S 

ABSTRACT ......................................................................................................................................................... 2 

CONTENTS......................................................................................................................................................... 3 

INTRODUCTION................................................................................................................................................ 4 

TYPES OF QUALITY ASSESSMENT ........................................................................................................................ 4 
Automatic Quality Assessment........................................................................................................................ 4 
Operational Quality Assessment..................................................................................................................... 4 
Science Quality Assessment............................................................................................................................ 5 

POSSIBLE APPLICATIONS OF MACHINE LEARNING............................................................................... 6 

REQUIRED CHARACTERISTICS............................................................................................................................. 6 
CANDIDATE APPROACHES................................................................................................................................... 7 

Supervised vs. Unsupervised Classifiers......................................................................................................... 7 
Classification Techniques.............................................................................................................................. 8 

CANDIDATE APPLICATIONS............................................................................................................................... 10 
Systematic Errors vs. Random Errors........................................................................................................... 11 
Violation of Logical Constraints vs. Deviation from Norms.......................................................................... 11 
Specific Examples........................................................................................................................................ 12 

NOTIONAL ARCHITECTURE & NEXT STEPS........................................................................................................ 13 

CONCLUSION .................................................................................................................................................. 15 



 

 
4

I NT RODUCT I ON 

One of the cornerstones of scientific research is the quality of the data collected.  Without an adequate 
understanding of the data quality, it is difficult to interpret or trust the derived results.  Quality assessment of 
remote sensing has traditionally rested on visualizations of the data, supported by statistical analysis.  Data are 
then corrected if possible or flagged if not.  However, the amount of data has been rising rapidly over the 
past decade, at a rate commensurate with Moore’s Law (i.e., a doubling every 18 months).  At the same time, 
the ability of humans to manually assess the data has not increased at the same rate.  The inevitable result is 
that the portion of data that is manually assessed is steadily decreasing.  Furthermore, the visualization 
techniques appropriate for a five-channel instrument like AVHRR are not effective or practical for 
hyperspectral instruments with hundreds or thousands of channels. 

At the same time, the requirements levied on quality assessment are also on the increase.  Automated 
knowledge extraction and reasoning applications by their nature have little or no human interaction in the 
results derivation process, making them susceptible to spurious conclusions from poor quality data.  
Furthermore, NASA’s vision of translating research results into near-real-time operational applications 
ensures that in some critical cases, no manual assessment of input data will be possible before the data are 
used. 

The increasing data volumes and quality requirements mandate an improvement in the techniques of 
automated quality assessment.  However, it is also possible that many of the intelligent data understanding 
methods that are driving the increased requirements may at the same time provide part of the solution.  
Indeed, quality assessment is the complement of feature detection and classification.  An apparently novel 
feature may sometimes be a quality artifact; conversely, data may be flagged as suspect because it falls outside 
the norm, yet represent a novel feature.  In fact, it is precisely these features which are the most important to 
detect, as they represent extreme conditions with significant implications. 

TYPES OF QUALITY ASSESSMENT 

In order to understand the current state of quality assessment in remote sensing, we examine the quality 
assessment concept of EOSDIS and related projects.  EOSDIS is one of the larger systems processing 
remote sensing data, with a diversity of producers of scientific data products, and as a result, a variety of 
quality assessment methods.  EOSDIS quality assessment can be classified into automatic, operational, and 
science quality assessment, depending on when in the production process the assessment is made. 

AUTOMATIC QUALITY ASSESSMENT   

Automatic quality assessment is applied within the production algorithm itself.  The results are expressed 
as a variety of data-specific bitfields, flags, masks and numeric values.  Normally, the quality indicators are 
specified at the pixel level within the data file, with additional granule-level summaries supplied in the 
metadata.  Because of the production environment, most of these methods are confined to operating within 
one data granule, employing bounds checking, neighbor comparison and curve fitting to assess quality. 

OPERATIONAL QUALITY ASSESSMENT   

Operational QA is applied by the data producer immediately after data production.  The emphasis is on 
detecting gross production errors (e.g. unreadable files).  The assessment is currently usually confined to an 
examination of file attributes or science metadata.  However, this is the most logical point in the process to 
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insert an added level of “quick” quality assessment, i.e., before data are inserted into the archive and 
distributed to users and downstream algorithms. 

SCIENCE QUALITY ASSESSMENT   

Science QA is typically performed by the instrument’s science team at a facility other than the production 
facility some time after the data are produced.  A number of different techniques are employed, ranging from 
visualization to statistical analyses (trending and bias detection) to further data processing.  Companion QA 
products or metadata updates may be sent in days or even months after the production date.  While Science 
QA clearly allows for the most thorough treatment of the data, it does have some limitations.  For example, 
the EOSDIS distribution “budget” allocates system distribution capacity to send 10% of the data to the 
Science Computing Facilities (SCFs) performing QA.  This allocation is not arbitrary, but rather indicative of 
the difficulty of shipping all of the data long distances to support quality assessment.  A second critical 
limitation is due to the time lag of science QA.  Most data are distributed to users while they are “fresh” 
(newly minted); the request frequency of data falls off rapidly with time.  The time lag of science QA thus 
virtually assures that the data will be used before the quality can be adequately assessed.  Clearly, the ideal 
would be if techniques of Science QA could be applied at the source of data production in near real time.  
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POSSI BL E A PPL I CAT I ONS OF M A CH I NE L EA RNI NG 

While there are numerous tasks related to data quality assessment, not all of them are amenable 
to machine learning techniques.  Similarly, there are numerous machine learning techniques, but not 
all are applicable to data quality assessment.  To identify possible applications of machine learning, 
we consider the technical characteristics required for quality assessment, and review alternative 
approaches in light of those requirements.  We then discuss specific data quality problems and how 
various machine learning techniques could be applied in each.   

REQUIRED CHARACTERISTICS 

To be considered “intelligent”, the data archive of the future should operate effectively with 
minimal human guidance, anticipate important events, and adapt its behavior in response to changes 
in data content, user needs, or available resources.  To do this, the intelligent archive will need to 
learn from its own experience and recognize hidden patterns in incoming data streams and data 
access requests.   

From the perspective of data quality assessment, this notion of intelligence would be manifested 
primarily in the ability of an archive to recognize data quality problems solely from its experience 
with past data, rather than having to be told explicitly the rules for recognizing such problems.  For 
example, the archive could flag suspect data by recognizing departures from past norms.  Even 
better, it could categorize data based on the type or severity of data quality problem.  The archive 
could learn to recognize problems either from explicit examples or simply its own observation of 
different types of data.   

Another manifestation of intelligence would be the ability of an archive to respond automatically 
to data quality problems.  For example, significant increases in the amount of data flagged as bad or 
missing might indicate that the data are exceeding the bounds expected by science algorithms.  (The 
importance of monitoring such shifts in reported data quality is highlighted by the delayed discovery 
of the ozone hole1.)  The intelligent archive could notify science or operations personnel so that the 
issue can be further examined and resolved.  Taking this concept further, the archive could retrieve 
ancillary data to confirm a data quality problem, obtain data from an alternate source, or request that 
the data be recollected or reprocessed in response to confirmed data quality problems.  This major 
step from automatic to autonomous data quality assessment broaches the subject of intelligent 
operations, which is the subject of another paper in this series2.   

The end-goal is to provide data with an appropriate level of quality in a timely and cost-effective 
manner.  For Earth science data archives, this goal implies the following additional requirements: 

• Ability to work with both spatial and temporal data.  This is a significant challenge, but 
fortunately it can be met at a variety of levels and facilitated by simple data transformations.  
At the simplest level, the ability to deal with spatial or temporal variables as names or 
numbers—independent of any real notion of space or time—may be sufficient.  Virtually all 
machine learning techniques can meet the requirement at this level.  The more complex level 
of true spatial and temporal reasoning (e.g., understanding that geospatial data exhibits 
diurnal and annual periodicity) is much harder.  For example, many machine learning 
techniques have difficulty with periodic patterns, such as the notion that months are ordered 
yet month 12 is “close” to month 1.  While relatively simple data preparation (e.g., extracting 
the season explicitly from a timestamp) can help machine learning algorithms reason over 
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cycles in the variables, this approach is only partially effective for temporal variables and 
even less effective for spatial variables.  

• Ability to work with continuous and categorical variables.  Earth science data includes a 
mix of continuous and categorical variables for both dependent and independent variables, 
so we will require algorithms that work with both.  With regard to independent variables, we 
note that temporal variables can be effectively represented as either categorical or 
continuous data (e.g., December = 12), so the choice of machine learning algorithms is not 
limited in this regard (though algorithms that assume categorical variables are ordered should 
work particularly well).  However, effective spatial reasoning will require algorithms that 
work well with continuous independent variables (i.e., latitude and longitude), because too 
much information is lost if location is converted to a categorical variable.  Fortunately, 
algorithms that work with continuous independent variables exist for all machine learning 
methods of interest.  With regard to dependent variables, we will require algorithms that 
work well with both continuous and categorical data, depending on the application.  While it 
is possible to convert continuous variables into categorical variables for symbolic reasoning 
(e.g., by binning), it is generally not reasonable to perform this conversion on the science data 
itself for two reasons.  First, there is a significant loss of information in this process, 
particularly if the binning process is not tailored specifically to the domain of the data.  And 
second, obtaining adequate resolution can drive up the number of bins, which in turn drives 
up the computational cost of rule induction and other machine learning tasks.  Algorithms 
that work only on categorical variables will be relegated to performing QA on summary data 
or on science data that is inherently categorical (e.g., land cover classes).   

• Fast and efficient operation.  Some current applications require data to be delivered within 
an hour, so a reasonable requirement might be to assess the data quality of a relatively large 
amount of data (say 100GB) within a few minutes.  Although machine learning algorithms 
are notoriously compute intensive, this requirement is easily met in a number of ways.  First, 
it is important to note that the computational effort associated with most machine learning 
algorithms is related to deriving rules or “training” the system; the rules themselves are 
generally simple (in computational terms) to apply in an operational mode.  If QA is a 
function of applying the rules, rather than deriving the rules, then the computational complexity 
associated with deriving the rules is not an issue, because this can be done on a subset of the 
data in an “off-line” process.  Second, it is sometimes possible (and desirable) to extract key 
characteristics or summaries of the data (e.g., an average value for an entire data granule) and 
perform QA on this much-reduced data.   

CANDIDATE APPROACHES 

There are numerous machine learning methods, techniques, and algorithms that can be applied 
to data quality assessment.  In this section we discuss various approaches, and the applicability of 
each in light of the required characteristics identified in the prior section.  The quality assessment 
problem is primarily one of classification, as indicated by the prevalence of “flag” types rather than 
numerical quality indicators.  As a result, we focus on classifiers, though numerical predictors may be 
useful in intermediate steps in the quality assessment process. 

SUPERVISED VS. UNSUPERVISED CLASSIFIERS 

Supervised classifiers require a training set of data that has already been classified through 
another means, such as human interpretation or direct observation.  Algorithms of this type include 
k-nearest neighbors3, back-propagation neural networks4, certain genetic algorithms5, and soft 
independent modeling of class analogy6.  They might actually be used in a number of different 
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ways.  The most direct application is to train the classifier on data with known quality signatures.  
This approach has a key advantage relative to unsupervised classifiers: they can incorporate 
information not available in the data to be classified (e.g., determination that a set of data is “good” 
or “bad” based on derived data products or human judgment).  This provides additional flexibility in 
the use of these algorithms, plus the opportunity to refine the quality assessment process over time in 
a directed manner by adding new examples to the training data set.  On the other hand, accumulating 
a sufficient training set presents a challenge, as the high data rates in remote sensing discourage 
human evaluation on a per pixel basis.  In some cases, an alternative exists:  further processing 
downstream may produce results that are more clearly recognizable as non-physical or beyond 
acceptable thresholds.  An example of this principle is MODIS Oceans processing, which uses Level 
3 data (globally gridded parameters) to derive implied quality at level 2 (swath-based geophysical 
parameters) and level 1 (calibrated radiance)7. 

Supervised classifiers might also be used in an indirect manner.  For example, one might classify 
all of the data according to a set of positive geophysical categories (e.g., land cover classifications); 
pixels that cannot be easily classified into a category may then be signs of quality problems such as 
random events or mixed contributions.  However, it is important not to confuse quality problems 
with truly novel features.  Another indirect approach based on geophysical categorization is to look 
for anomalous variations in time and space of pixel classifications, such as sudden changes from 
agricultural to boreal in a given location, or an isolated agricultural pixel amongst snow pixels. 

Unsupervised classifiers generate classes directly from the observed data, a process commonly 
called “clustering”.  Algorithms of this type include K-means clustering8, Kohonen neural networks9, 
probabilistic categorization trees (e.g., COBWEB10), unsupervised Bayesian classifiers (e.g., 
AutoClass11), and principal components analysis12.  An advantage of unsupervised classifiers in 
general is that they can identify new classes that may not have been defined a priori.  Potentially, this 
technique could identify anomalous data sets without explicit training, either by directly identifying 
separate clusters for “typical” and “unusual” data, or by identifying normal clusters that can be used 
as references to identify outliers in a data stream13,14.  The implied benefit is less human effort (that is, 
no need to identify different classes of data quality problems and good training examples of each) 
plus the potential to identify data quality problems not previously considered.   

CLASSIFICATION TECHNIQUES 

NAÏVE BAYES CLASSIFICATION 

Naïve Bayes classification is a supervised technique for ranking alternative hypotheses based on 
Bayes Theorem, which states that the evidence confirms the likelihood of a hypothesis only to the 
degree that the evidence would be more probable with the assumption than without it.  Bayes’ 
formula is: 

prob(X|Y,I) = prob(Y|X,I) × prob(X|I) / prob(Y|I),  

that is, the posterior probability is proportional to the product of the likelihood function and the 
prior probability.  In supervised Bayes classification, we begin with a training set where each evidence 
(data) vector E has been assigned to a class C.  Training consists of computing the probability density 
function for each combination Ei and C, i.e., Pr(Ei |C), and the overall probability for each class.  
The forward application of the classifier computes the probability for each possible class C as:  

Pr(C|E) = P Pr(Ei |C) × Pr(C) / Pr(E)  
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(In practical applications, the denominator is often bypassed by normalizing over all the classes.)   

Technically, this comparative approach introduces a number of constraints related to the 
variables that may be violated in data quality assessment applications, including conditional 
independence, non-zero probabilities, and a prior probability distribution (or, equivalently, a 
large/representative training set).  In practice, however, Bayesian classifiers often perform well 
compared to more sophisticated methods, even when these conditions are violated somewhat.15    

A particularly difficult condition to meet for remote sensing data is conditional independence;  
for example, adjacent spectral bands in spectroradiometers are often highly correlated.  One 
approach that addresses this issue is Selective Naïve Bayes classification, which incorporates forward 
selection, that is, adding attributes or channels one at a time, discarding those which do not add to 
the solution16. 

PROBABILISTIC NETWORKS 

Probabilistic networks (e.g., Bayesian networks17) are directed acyclic graphs where the nodes 
represent assertions and the arcs represent causal belief (i.e., the probability that a value of one node 
causes a given value in another node).  As such, they would appear to have good applicability to data 
quality assessment in cases where there are a number of known factors that determine the resulting 
quality of a set of data.  A special case of this is when corroboration is needed to confirm a data 
quality problem: the nodes could represent features, events, or quality-related factors extracted from 
several data sources, and the arcs could represent judgments about data quality in light of the 
additional evidence.    

NEURAL NETWORKS 

Neural networks perform classification using nodes that perform a simple transfer function 
connected either in a non-recurrent structure (i.e., without feedback, such as feed-forward/back-
propagation networks) or a recurrent structure (e.g., Kohonen self-organizing maps).  Back 
propagation networks are supervised classifiers while Kohonen self-organizing maps are 
unsupervised classifiers, and thus each inherits the advantages and disadvantages discussed above.  
Hopfield networks use a recurrent structure to implement associative memories and have also been 
used for unsupervised classification, but their applicability to data quality assurance is probably 
limited.  Neural networks work well with continuous data, which can be an advantage for data quality 
assessment in Earth science archives.  Neural networks can also handle categorical data, albeit 
awkwardly, by mapping each category value to a separate node and representing the value itself as 0 
(not present) or 1 (present).  Neural networks can be used on temporal data through the use of 
“sliding window” techniques or recurrent network structures.18   

RULE INDUCTION 

Rule induction is a supervised classification technique that involves learning general rules to 
describe specific examples.  There are a wide variety of methods.  Some take a top-down approach 
(i.e., building from the least restrictive clause to more restrictive clauses) while others take a bottom-
up approach.  Some build decision trees, while others build more general sets of if-then rules.  
Example algorithms include FOIL and RDT (top-down induction of Horn clauses); C4.5, ID3, and 
CART (top-down induction of decision/regression trees); GOLEM and PROGOL (bottom-up 
induction of Horn clauses); and CHAID (bottom-up induction of decision trees).  Many rule 
induction algorithms work well with either categorical or continuous independent variables, an 
important capability as noted in the prior section. We note that regression tree algorithms (which 
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work with continuous dependent variables) will be suited for different quality assessment problems 
than algorithms that work only with categorical dependent variables. We also note that generalized 
rule induction algorithms are perhaps more flexible than those based on decision trees because the 
resulting rules are not constrained to a tree representation…although the importance of this 
flexibility in the context of data quality assessment is not clear.  Finally, we note that through 
flattening techniques, most rule induction algorithms can be used to identify temporal relationships.19   

SUPPORT VECTOR MACHINES 

Support Vector Machines use a structural risk minimization principle and kernel functions to 
perform regression, classification, and density estimation.  This method finds a hyperplane with 
maximal margin between the training examples (where the examples closest to the hyperplane are 
called “support vectors”).  It is general in that a variety of kernel functions (i.e., any function that can 
be reduced through transformations to an inner product of vectors) can be used to perform complex 
mappings of data into a feature space where a hyperplane can be used to separate the classes.  This 
enables support vector machines to learn polynomial classifiers, radial basis function classifiers, two-
layer sigmoidal neural nets, etc.  In terms of handling categorical and continuous data, they are similar 
to neural nets, and thus would likely have similar applicability to various data quality assessment 
problems.   

GENETIC ALGORITHMS 

Genetic algorithms use a process analogous to evolution (including recombination, mutation, 
and suitability tests) to select values or combinations of items that best meet some set of criteria, 
such as accurately classifying data.  The technique is very flexible, so the items manipulated can be 
more than simply attribute values: combining and selecting whole functions is also possible.  In the 
simplest case, we can envision a small set of simple statistical functions that can be automatically 
“evolved” to identify data anomalies (e.g., an average value differing significantly from the norm).  
An advantage of genetic algorithms is that they readily accommodate functions involving inequalities 
and discontinuities (e.g., for range checking or threshold detection), which can be particularly useful 
in data quality assessment.  Another advantage is that the basic functions used in the algorithm can 
be selected to correspond to known phenomena in science data, which can enhance interpretability 
of the results.  Finally, genetic algorithms can be used to find predictive patterns in categorical time-
series data without the need to reformulate the problem (via data transformations) into a concept 
learning problem.20  Genetic algorithms can also be considered a meta-learning strategy that can be 
applied to other techniques (e.g., to train a neural network).   

LAZY LEARNING TECHNIQUES 

Lazy learning techniques (such as k-nearest neighbors) defer classification until an item to be 
classified is processed (e.g., by identifying the class label of the K most similar items in the 
classification set.  These techniques are probably not applicable to quality assurance in large archives 
because too much computation is deferred until the actual time of classification.   

CANDIDATE APPLICATIONS 

In this section we attempt to identify where machine learning can be effectively applied to data 
quality assessment.  To do this, we consider the strengths and weaknesses of machine learning in 
general, plus the characteristics of specific methods against the challenges posed by different types of 
data quality problems.  The goal is not to be comprehensive, but to generate ideas for future research 
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in this area.   

We consider different types of errors in terms of when they occur (random vs. systematic) and 
how they are manifested (violations of logical constraints vs. deviation from norms).  In general, we 
will want to focus on detecting errors that are unlikely to be found in a timely fashion through 
normal usage of the data and where the cost of latent errors is high.  Good candidates include 1) 
systematic errors that occur under complex conditions, are evident only from an unusual perspective, 
or need to be found early; and 2) random errors that can be made more apparent when deterministic 
fluctuations in the data are factored out.  The following sections explore these issues in more detail.   

SYSTEMATIC ERRORS VS. RANDOM ERRORS 

Systematic errors are those that appear regularly in the data under a given set of conditions.  An 
example systematic error is incorrectly classified pixels at land/water boundaries, perhaps due to 
detector response characteristics or errors in the science algorithm.21 Such errors can be very hard to 
detect (in a general sense) using machine learning approaches because identifying a problem may 
require relatively deep scientific knowledge about what can be induced from the data.  At the same 
time, such errors are often easily detected by the users because if the governing conditions occur 
frequently, the problem will manifest itself frequently.  Thus, detecting systematic errors does not 
initially look like a good application for machine learning.  There are three mitigating factors.  First, 
some systematic errors can be subtle in the context of normal uses of the data but easily identified 
from a fresh perspective.  For example, data that appears normal when viewed as a spatial image at a 
given point in time can easily be seen to have severe clipping or discontinuities when viewed as a 
time series at a given location.  We speculate that machine learning algorithms, particularly regression 
tress and unsupervised classifiers, can provide this fresh perspective.  Second, the conditions under 
which a systematic error occurs can be so complex that the error appears to users to be random:  
identifying such complex patterns is the forte of machine learning.  Finally, a substantial amount of 
time can elapse before users examine the data and discover an error, at which point opportunities to 
re-acquire the data may have passed or the erroneous data may have already been incorporated into 
numerous other data products or decisions.  Thus, in cases where there is a significant cost to latent 
errors in the data, there may be an argument for automated quality assessment even when the error 
would certainly be found later by users.   

Random errors are those that appear irregularly in the data under a given set of conditions.  An 
example is a sudden variation in a data value caused by data corruption.22  Such errors are relatively 
easy to detect using statistical approaches because one only need detect sudden changes from normal 
values.  At the same time, these errors can easily hide from users in the large volumes of data in the 
archive if they occur infrequently. In the Earth science domain, detecting random errors is 
significantly complicated by the natural fluctuations present in the data, which can have many of the 
same attributes as anomalies.  We speculate that machine learning techniques can be applied in 
several ways to assist with this problem.  For example, they could be applied to adaptively determine 
what values are “normal” at a given time or location, and thus provide a baseline for exposing 
anomalies.   

VIOLATION OF LOGICAL CONSTRAINTS VS. DEVIATION FROM NORMS 

Violations of logical constraints covers a broad set of errors, some of which are good candidates 
for data quality assessment based on machine learning, and some of which are not.  Simple 
constraints (e.g., a set of percentages should not total more than 100%) are probably best checked by 
simple rules based on the domain of a variable; there is no clear value for machine learning here.  At 
the other end of the spectrum are logical constraints that require relatively deep knowledge about 
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physical processes that cannot be derived from the data stream itself (e.g., ocean temperatures should 
not be above boiling); rules developed by human experts may be best here.  In the middle, however, 
are a large number of moderately complex constraints that could be learned from the data because 
they represent deviations from the norm (e.g., forest in the Sahara or snow in subtropical India are 
unlikely).  While such rules will often be intuitive to a person with even modest knowledge of the 
domain, machine learning techniques (particularly unsupervised classifiers) could relieve the data 
quality analyst of the burden of identifying a comprehensive set of rules, and could automatically 
adapt to observed changes in the data as well.  A related approach would be to store normative 
examples (rather than derived rules) and use statistical or lazy learning techniques to identify 
deviations from the norm or similarities to known bad datasets.   

SPECIFIC EXAMPLES 

Following are four examples based on real data quality problems that serve to illustrate the 
general classes of data quality problems discussed above, drawn from the MODIS Land quality issues 
database.23  Candidate approaches are discussed within the context of the unique challenges 
associated with each problem.  The point of this discussion is to provide a concrete basis for judging 
the applicability of machine learning to data quality assessment and to stimulate further exploration 
of this topic.    

• Detection of unusual data values.  An example scenario is detecting an unusually small 
data file resulting from premature termination of processing due to corrupted data.    In this 
case, the data may be correlated with other item attributes (e.g., file size by file type), but 
they are not part of a time series.  In general, it seems likely that unsupervised classifiers 
would be appropriate because they eliminate the need to have explicit examples of bad data, 
which relieves us of finding or synthesizing errors for the potentially large number of items 
to be monitored.   The classifier could learn the fundamental statistical properties of the data 
stream (min, max, etc.).  Genetic algorithms, k-means clustering, and support vector 
machines are good candidates.  The trick is to assume that the majority of data is “normal” 
and to find a general distance metric that segregates outliers.    

• Detection of geophysically illogical values in spatial 
data.  An example scenario is detecting values that indicate 
substantial vegetation in areas of ice, snow or desert caused 
by algorithm errors under certain data conditions.24    This is a 
specific case of a systematic violation of a logical constraint, 
and thus (as indicated above) it is generally not a good 
candidate for quality assessment based on machine learning.  
Nonetheless, we can envision two approaches to detecting 
such problems using machine learning.  First, rule induction could be used to identify 
relationships between data values at the same geo-location in two different data sets (e.g., 
snow/ice and vegetative index).  Exceptions to these rules (e.g., vegetation on permanent 
ice) could be flagged as possible data quality problems.  Second, in the case where the 
breakdown in the algorithm is caused by a transient phenomenon (e.g., cloud cover), rule 
induction could be used to learn typical relationships between categorical values at the same 
location in the same data product but taken at different times (e.g., deforestation can happen 
quickly but reforestation does not).  For categorical data, the consolidated representation of 
the rules could take the form of a Markov chain.  Again, exceptions to these rules (e.g., 
instant reforestation) could be flagged as possible data quality problems.        
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• Anomaly detection in time series data.  An example 
scenario is detecting abnormally low surface reflectance 
values caused by improper handling of missing or corrupt 
data following a disk crash25.   This problem is similar to 
detecting unusual data values (above), with the additional 
opportunity (and complexity) of judging data values within 
the context of a time sequence.  Other complicating 
factors include the fact that wide variations are expected to 
occur depending on location (esp. depending on the Earth 
surface characteristics) and time (including seasonal variations).  Although statistical methods 
have been studied for quite some time26, we speculate that a machine learning approach will 
provide more robust models with lower false alarm rates.  Machine learning has been 
successfully demonstrated for anomaly detection in noisy time series (e.g., for the purpose of 
network intrusion detection27), but many of the methods are designed to work on categorical 
data, which would require binning of the continuous data in the scenario considered here.  
In general, it seems likely that unsupervised classifiers would be appropriate because they 
eliminate the need to have explicit examples of bad data, which is important given that we 
cannot say what anomalies might occur in a given data stream.   In addition to learning the 
fundamental statistical properties of the data stream (min, max, etc.), the classifier could 
learn the typical value sequences or other time-dependent characteristics.  Genetic 
algorithms, k-means clustering, and support vector machines are good candidates.  Given the 
data volumes typical in remote sensing data archives added to the fact that data tends to be 
organized first by location and second by time, we will want a method that minimizes the 
number of samples that must be examined at a given time to detect an anomaly (ideally, only 
one).  Because of all these factors, detecting complex patterns that are considered 
“surprising” within the context of a time series remains an area of active research with 
promise in the long term.28   

• Detection of raster artifacts in spatial data.  An example 
scenario is detecting striping associated with instrument scan lines 
caused by improper handling of high aerosol levels by an 
instrument or algorithm29.  This problem has been examined in the 
context of image analysis and visual quality inspection.30  By 
characterizing the image with appropriate visual descriptors (e.g., 
using a Hough Transform), one can use a variety of supervised or 
unsupervised classifiers to segregate normal and bad images.  Any 
method that works well with continuous variables could be 
applied, including regression trees, neural networks, and support vector machines.  
Alternatively, a feed-forward/back-propagation neural network or support vector machine 
could be trained to directly recognize problems in the spatial data.   

NOTIONAL ARCHITECTURE & NEXT STEPS 

The discussion above indicates a great deal of promise for the application of machine learning to 
data quality assessment.  We conclude that the intelligent archive of the future will include a 
component that participates in the data quality assessment process, perhaps automating a limited 
number of checks initially and evolving over time toward greater autonomy.  Machine learning 
algorithms are a core component of an autonomous QA system; however, they must be incorporated 
in an architecture and operations concept that can make use of them.  For instance, many such 
algorithms require some data preparation in the form of selection, subsetting and transformation.  
Likewise, several techniques rely on reference datasets to detect anomalies.  The following 
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notional architecture diagram depicts a machine-learning based quality assessment architecture, 
including such support components. 

This architecture in Figure 1 highlights the importance of three support components specifically 
needed for automated data quality assessment.  The first is a Data Characterizer that extracts from 
each data set those characteristics thought to be correlated with data quality.  This information can be 
used either to augment or summarize the data to improve the performance of automated data quality 
assessment.  The Data Characterizer also transforms variables when necessary to make them more 
amenable to machine learning.  The second is a Reference Subsetter, which captures and stores 
reference data sets.  These data sets can be used for lazy learning and search-based techniques, as well 
as a basis for detecting time-series anomalies.   

 The third element, the Corroborator, is used to distinguish between unusual (but real) features 
and quality artifacts.  When such an ambiguity is recognized, the Corroborator seeks other sources of 
data to resolve the ambiguity.  These may be data collected from different kinds of instruments, 
assimilations or models, or even other elements from within a constellation of similar sensors.  In 
some cases, the data request may even lead to the tasking of an instrument to collect additional data 

to corroborate a finding.  

Figure 1.  Notional data quality assessment architecture including machine learning.   
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CONCL USI ON 

A number of interesting challenges remain before the notional data quality assessment 
architecture can be realized in a working system.  One of these is the understandable tendency of 
investigators to focus on the detection of interesting features with machine learning algorithms, 
rather than the search for quality problems.  While there is clearly much work to be done in the 
former area, the latter is virtually unexplored.  If NASA is to reach its goal of applying science 
research to real-time applications for transition to operational agencies, a robust, automated quality 
assessment capability is essential.  In many cases, the research and development on applicable 
technologies is already underway; all that would be needed is a shift in focus.  

A number of potential areas bear investigation: 

• the performance of specific algorithms on representative data quality problems using 
real data 

• the theoretical basis and algorithmic approaches to identifying anomalies and patterns in 
geo-temporal variables 

• identifying appropriate information-preserving transforms for spatial and temporal 
variables to facilitate pattern recognition 

In addition, a number of architectural issues need to be addressed, such as the appropriate 
transformations for the “data characterizer” and how to connect general-purpose data quality 
assessment algorithms to a wide variety of complex data streams.  Although optimal solutions are 
probably out of reach, workable solutions are not.  A modest amount of effort could address the 
remaining challenges sufficiently to bring us substantially closer to realizing the vision of an 
intelligent archive.    
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